Effect of temperature on spiking patterns of neocortical layer 2/3 and layer 6 pyramidal neurons

نویسندگان

  • Tristan Hedrick
  • Jack Waters
چکیده

The spiking patterns of neocortical pyramidal neurons are shaped by the conductances in their apical dendrites. We have previously shown that the spiking patterns of layer 5 pyramidal neurons change with temperature, probably because temperature modulates the electrical coupling between somatic and dendritic compartments. Here we determine whether temperature has similar effects on the spiking patterns of layer 2/3 and layer 6 pyramidal neurons in acute slices of mouse primary motor cortex. In both cell types, decreasing temperature led to more irregular spiking patterns. Our results indicate that a decrease in spiking regularity with decreasing temperature, probably mediated by increased electrical coupling between soma and dendrites, is common to all pyramidal neurons in motor cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiking Patterns of Neocortical L5 Pyramidal Neurons in Vitro Change with Temperature

A subset of pyramidal neurons in layer 5 of the mammalian neocortex can fire action potentials in brief, high-frequency bursts while others fire spikes at regularly spaced intervals. Here we show that individual layer 5 pyramidal neurons in acute slices from mouse primary motor cortex can adopt both regular and burst spiking patterns. During constant current injection at the soma, neurons displ...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Layer Specific Development of Neocortical Pyramidal to Fast Spiking Cell Synapses

All cortical neurons are engaged in inhibitory feedback loops which ensure excitation-inhibition balance and are key elements for the development of coherent network activity. The resulting network patterns are strongly dependent on the strength and dynamic properties of these excitatory-inhibitory loops which show pronounced regional and developmental diversity. Therefore we compared the prope...

متن کامل

Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors.

The neuromodulator acetylcholine (ACh) shapes neocortical function during sensory perception, motor control, arousal, attention, learning, and memory. Here we investigate the mechanisms by which ACh affects neocortical pyramidal neurons in adult mice. Stimulation of cholinergic axons activated muscarinic and nicotinic ACh receptors on pyramidal neurons in all cortical layers and in multiple cor...

متن کامل

Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons.

The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012